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Abstract- The association rule mining has been very useful in many 
business applications, such as market analysis, web data analysis, 
decision making, knowing customer purchase behavior etc. In almost 
all transactional databases, new transactions are added with time. So 
an efficient algorithm is required to be developed in order to avoid re-
scanning of old datasets. Incremental mining [18] deals with 
generating association rules based on available knowledge (obtained 
from mining of previously stored databases) and incremented 
databases, without scanning the previously mined databases again. In 
this paper a novel approach of using horizontal and vertical database 
layout, a new representation of transactional database, has been 
proposed (modified version of Inverted Matrix [17]) to mine large 
database incrementally. One of the major advantage of this approach 
is that it generates the data structure in a single scan of the database 
and whenever new database is added incrementally, the generated 
structure is updated to consider the effect of incremented database. In 
this paper the Modified Inverted Matrix is distributed amongst 
parallel nodes. Frequent item from the modified inverted matrix is 
assigned to parallel nodes in alternate splitting fashion. In parallel 
implementation, a Co-Occurrence Frequent Item (COFI) tree [17] for 
assigning frequent item is generated by the parallel nodes. Mining 
process is accomplished by all nodes which generate all frequent items 
in which the assigned items are participated. Here, less 
communication is required amongst the master node and all parallel 
node to generate all frequent item sets. Moreover, one of the 
additional advantage is that the algorithm still responds correctly 
without the need for changing the data structure, whenever desired 
support value changes. In this paper we provide the theoretical proof 
of concept for our proposed approach. 

Keywords-Parallel mining, Incremental mining, Inverted matrix, COFI 
tree. 

1. INTRODUCTION

Due to the increasing use of large amount of data in various 
applications, the importance of data mining has grown 
rapidly. With respect to business applications, analysis of 
previous transactional data can provide valuable 
information on purchase behavior of customer, and thus 
help in making business decisions. Thus it is necessary to 
collect and analyze a sufficient data properly before making 
any decisions. Since the amount of data being processed is 
large, it is important for the mining algorithms to be very 
computationally efficient. Various data mining algorithms 
have been explored in the literature [1–6]. Recently many 
important applications have created the need of incremental 
mining. This is due to the increasing use of the such 
databases where data is being continuously added e.g., 
super market data, stock market data, sales data, and 
weather/traffic records, etc. In the incremental mining, data 
are continuously being added with time. The aim of 
incremental mining techniques is to re-run the mining 
algorithm on the only updated database. However, it is 
obviously less efficient since previous mining rules are not 
utilized for discovering new rules while the updated portion 
is usually small compared to the whole dataset. 
Consequently, the efficiency and the effectiveness of 

algorithms for incremental mining are both crucial issues. 
Algorithms should be such that only updated transactions 
and previous mined rules to be taken into account for 
generating new rules. The process of incremental mining is 
described in Fig. 1. The next few sections discuss the 
related work and the proposed approach for Incremental 
Mining.  

Fig 1: Process of incremental mining [4] 

2. RELATED WORK

2.1 Inverted Matrix  
The concept of Inverted Matrix and COFI Tree [17] was 
used for Interactive mining, where if the support change, 
re-scan of complete dataset is not required. In Inverted 
Matrix [17] the transactional data is converted into a new 
database layout called Inverted Matrix that prevents 
multiple scanning of the database during the mining phase, 
in which finding frequent patterns could be achieved in less 
than a full scan of Inverted Matrix. The Inverted Matrix is 
then mined using different support levels to generate 
association rules using the Inverted Matrix algorithm. 
Inverted Matrix layout is a combination of both horizontal 
and vertical layouts. Each item associates with all 
transactions in which it occurs, and each transaction with 
all its items using pointers. The item is the key of each 
record in this layout. Each attribute on the Inverted Matrix 
is a pointer that points to the location of the next item on 
the same transaction. The pointer is a pair where the first 
element indicates the address of a line in the matrix and the 
second element indicates the address of a column. Each line 
in the matrix has an address and is prefixed by the item it 
represents with its frequency in the database. The lines are 
ordered in ascending order of the frequency of the item. 
Building the Inverted Matrix is done in two phases, in 
which phase one scans the database once to find the 
frequency of each item and orders them into ascending 
order. The second phase scans the database again once to 
sort each transaction into ascending order according to the 
frequency of each item.  
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2.2 Co-occurrence Frequent-Item (COFI) Trees  
Computing the frequencies is done by reading sub-
transactions for frequent items directly from the Inverted 
Matrix, then building independent trees called COFI Trees 
[17] for each frequent item in the transactional database.
Each one of the trees are mined separately as soon as they
are built, without building conditional sub-trees recursively
and are then discarded. The COFI-tree for a given frequent
item x contains only items that are more frequent than x or
as frequent as x. For each given frequent 1-itemset all
frequent k-item sets are found. For this, a COFI-tree is built
for each frequent item except the most frequent one,
starting from the least frequent.
The mining process [17] is done for each tree
independently. From each branch of the tree, using the
support count and the participation count, candidate
frequent patterns are found and non-frequent patterns are
discarded at the end when all branches are processed.

Tid Items
T1 A G D C B 
T2 B C H E D 
T3 B D E A M 
T4 C E F A N 
T5 A B N O P 
T6 A C Q R G 
T7 A C H I G 
T8 L E F K B 
T9 A F M N O 
T10 C F P J R 
T11 A D B H I 
T12 D E B K L 
T13 M D C G O 
T14 C F P Q J 
T15 B D E F I 
T16 J E B A D 
T17 A K E F C 
T18 C D L B A 

Figure 2: Transaction Database [17] 

3. PARALLEL IMPLEMENTATION OF FREQUENT PATTERN

MINING WITH PROPOSED MODIFIED INVERTED MATRIX

Inverted matrix generation requires two full I/O scans of
the dataset and generates a special disk based data
structure. One scan is required to find frequencies of all
items and then other scan for storing the items in
transactional array. In our work, it was found that instead of
two scan, a modified inverted matrix in which entries are
not sorted according to support count can be build with
single scan. This approach reduces one I/O read of
database. Below Figure 3(a) and 3(b) are an image of
Modified Inverted Matrix with single scan of transactional
database given in Figure 2. Then using the information of
inverted matrix, COFI Tree can be build which can then be
mined to generate frequent patterns. Since Modified
Inverted Matrix (MIM) is not sorted, whenever any new
transactions are added, the information of the same can be
easily incorporated into Modified Inverted Matrix without
scanning the original database again which makes mining
incrementally. Then COFI Tree can be generated from
MIM and then mined where the procedure remains same as
in [17]. In Modified Inverted Matrix with single scan, each
item as read from database makes an entry into Modified
Inverted Matrix with its support counter equal to 1. If an

item is already present, its support count is incremented. 
Along with this the transactional array consists of two 
entries, one (backward pointer) for item which is before 
current item and another (forward pointer) for item which 
is after current item in transactional database. The entries 
made are same as in Inverted matrix [17]. Once an item is 
read its entry is made into Modified Inverted Matrix and 
consequently its backward pointer is set in its 
corresponding transactional array and previous item’s 
forward pointer is set at the same time. Same process is 
repeated until all transactions are read. The item location 
field only is sorted in order to reduce searching complexity 
while building COFI Tree. The index column contains 5 
entries namely sorted item, its support and its original 
location in transactional array and actual item with its 
support count. These five entries are kept to make 
searching of item easier. The Modified Inverted Matrix for 
first 13 transactions of Figure 2 is shown in the Figure 3(a) 
given below. The Modified Inverted Matrix built as shown 
in figure 3(b) is same as that of one build after reading 
complete set of transactions at once. Thus it makes 
incremental mining process possible. The algorithm for 
creating MIM is as given below 

Modified Inverted Matrix Algorithm 
Input : Transactional Database (D) 
Output : Modified Inverted Matrix 
Method : 
Pass I 
1. While there is a transaction T in the database (D)
do
1.1 while there are items si in the transaction do
1.1.1Create the index part of the MIM

1.1.1.1 Add an entry in transactional array row 
with 4- parameters 
(A) Location in index part of the IM of the next
item si+1 in T null if si+1 does not exist.
 (B) Location of the next empty slot in the
transactional array row of si+1, null if si+1 does
not exist.
(C) Location in index part of the IM of the
previous item si-1 in T null if si-1 does not exist.
(D) Location of the next empty slot in the
transactional array row of si-1, null if si-1 does not
exist.

1.2 Goto 1.1 
2. Goto 1
3. Sort index part of IM and keep original entry of item and
its frequency with sorted one.

Creating and Mining COFI-Trees from MIM 
Input: Modified Inverted Matrix (IM) and a minimum 
support threshold 
Output: Full set of frequent patterns 
Method: 
1. Frequency Location = Apply binary search on the
index part of the IM to find the Location of the
first frequent item based on min_sup.
2. While (Frequency Location < IM Size) do
2.1 A = Frequent item at
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location (Frequency Location) 
2.2 A Transactional = The Transactional array of 
item A 
2.3 Create a root node for the (A)-COFI-Tree with 
frequency-count and participation-count = 0 
2.4 Index Of TransactionalArray = 0 
2.5 While (Index Of TransactionalArray < Frequency 
of item A) 
2.5.1 B = item from Transactional array at location 
(Index Of TransactionalArray) 
2.5.2 Follow the chain of item B to produce 
sub-transaction C (forward and backward) 
2.5.3 Items on C form a pre_x of the (A)-COFI-Tree. 
2.5.4 If the pre_x is new then 
2.5.4.1 Set frequency-count= 1 and participation- 
count= 0 for all nodes in the path 
Else 
2.5.4.2 Adjust the frequency-count of the already 
exist part of the path. 
2.5.5 Adjust the pointers of the Header list if needed 
2.5.6 Increment Index Of TransactionalArray 
2.5.7 Goto 2.5 
2.6 MineCOFI-Tree (A) 
2.7 Release (A) COFI-Tree 
2.8 Increment Frequency Location //to build the next 

COFI-Tree 
3. Goto 2 
 
Function: MineCOFI-Tree (A) 
1. nodeA = select next node //Selection of nodes 
will start with the node of most frequent item and 
following its chain, then the next less frequent item 
with its chain, until we reach the least frequent item 
in the Header list of the (A)-COFI-Tree 
2. while there are still nodes do 
2.1 D = set of nodes from nodeA to the root 
2.2 F= frequency-count-participation-count of nodeA 
2.3 Generate all Candidate patterns X from 
items in D. Patterns that do not have A 
will be discarded 
2.4 Patterns in X that do not exist in the A-Candidate 
List will be added to it with frequency = F 
otherwise just increment their frequency with F 
2.5 Increment the value of participation-count 
by F for all items in D 
2.6 nodeA = select next node 
2.7 Goto 2 
3. Based on support threshold _ remove non-frequent 
patterns from A Candidate List. 

 
Loc Index Transactional Array 

  1 2 3 4 5 6 7 8 

1 
J,1,15 
A, 8 

(@,@) 
(2,1) 

(7,2) 
(@,@) 

(13,1) 
(9,1) 

(@,@) 
(5,4) 

(@,@) 
(4,4) 

(@,@) 
(4,5) 

(@,@) 
(13,3) 

(@,@) 
(3,4) 

2 
Q,1,18 
G, 4 

(1,1) 
(3,1) 

(16,1) 
(@,@) 

(17,1) 
(@,@) 

(4,7) 
(10,3) 

    

3 
M,2,8 
D, 6 

(2,1) 
(4,1) 

(7,1) 
(@,@) 

(5,3) 
(7,2) 

(1,8) 
(5,6) 

(@,@) 
(7,5) 

(8,2) 
(4,7) 

  

4 
P,2,11 
C, 7 

(3,1) 
(5,1) 

(6,1) 
(5,2) 

(@,@) 
(7,3) 

(1,5) 
(18,1) 

(1,6) 
(6,2) 

(@,@) 
(13,4) 

(3,6) 
(2,4) 

 

5 
L,2,12 
B, 7 

(4,1) 
(@,@) 

(@,@) 
(4,2) 

(@,@) 
(3,3) 

(1,4) 
(9,2) 

(14,1) 
(@,@) 

(3,4) 
(6,3) 

(7,5) 
(14,2) 

 

6 
K,2,14 
H, 3 

(4,2) 
(7,1) 

(4,5) 
(17,1) 

(5,6) 
(17,2) 

     

7 
R,2,16 

E, 5 
(6,1) 
(3,2) 

(3,3) 
(1,2) 

(4,3) 
(13,1) 

(12,1) 
(13,2) 

(3,5) 
(5,7) 

   

8 
I,2,17 
M, 2 

(13,3) 
(9,3) 

(@,@) 
(3,6) 

      

9 
H,3,6 
N, 3 

(1,3) 
(@,@) 

(5,4) 
(10,1) 

(8,1) 
(10,2) 

     

10 
N,3,9 
O, 3 

(9,2) 
(11,1) 

(9,3) 
(@,@) 

(2,4) 
(@,@) 

     

11 
O,3,10 

P, 2 
(10,1) 
(@,@) 

(13,4) 
(15,1) 

      

12 
G,4,2 
L, 2 

(@,@) 
(7,4) 

(14,2) 
(@,@) 

      

13 
F,4,13 

F, 4 
(7,3) 
(1,3) 

(7,4) 
(14,1) 

(1,7) 
(8,1) 

(4,6) 
(11,2) 

    

14 
E,5,7 
K, 2 

(13,2) 
(5,5) 

(5,7) 
(12,2) 

      

15 
D,6,3 
J, 1 

(11,2) 
(16,2) 

       

16 
C,7,4 
R, 2 

(18,1) 
(2,2) 

(15,1) 
(@,@) 

      

17 
B,7,5 
I, 2 

(6,2) 
(2,3) 

(6,3) 
(@,@) 

      

18 
A,8,1 
Q, 1 

(4,4) 
(16,1) 

       

 
Figure 3 (a): Proposed Modified Inverted Matrix generated with single scan of database of first 13 transactions 
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Loc Index Transactional Array 

  1 2 3 4 5 6 7 8 9 10 11 

1 
R,2,16A, 

11 
(@,@) 
(2,1) 

(7,2) 
(@,@) 

(13,1) 
(9,1) 

(@,@) 
(5,4) 

(@,@) 
(4,4) 

(@,@) 
(4,5) 

(@,@) 
(13,3) 

(@,@) 
(3,4) 

(5,9) 
(3,8) 

(@,@) 
(14,3) 

(5,10) 
(@,@) 

2 
Q,2,18G, 

4 
(1,1) 
(3,1) 

(16,1) 
(@,@) 

(17,1) 
(@,@) 

(4,7) 
(10,3) 

       

3 
H,3,6 
D, 9 

(2,1) 
(4,1) 

(7,1) 
(@,@) 

(5,3) 
(7,2) 

(1,8) 
(5,6) 

(@,@) 
(7,5) 

(8,2) 
(4,7) 

(5,8) 
(7,6) 

(1,9) 
(@,@) 

(4,10) 
(12,3) 

  

4 
M,3,8 
C, 10 

(3,1) 
(5,1) 

(6,1) 
(5,2) 

(@,@) 
(7,3) 

(1,5) 
(18,1) 

(1,6) 
(6,2) 

(@,@) 
(13,4) 

(3,6) 
(2,4) 

(@,@) 
(13,5) 

(13,7) 
(@,@) 

(@,@) 
(3,9) 

 

5 
N,3,9 
B, 10 

(4,1) 
(@,@) 

(@,@) 
(4,2) 

(@,@) 
(3,3) 

(1,4) 
(9,2) 

(14,1) 
(@,@) 

(3,4) 
(6,3) 

(7,5) 
(14,2) 

(@,@) 
(3,7) 

(7,7) 
(1,9) 

(12,3) 
(1,11) 

 

6 
O,3,10 

H, 3 
(4,2) 
(7,1) 

(4,5) 
(17,1) 

(5,6) 
(17,2) 

        

7 
P,3,11E, 

8 
(6,1) 
(3,2) 

(3,3) 
(1,2) 

(4,3) 
(13,1) 

(12,1) 
(13,2) 

(3,5) 
(5,7) 

(3,8) 
(13,6) 

(15,3) 
(5,9) 

(14,3) 
(13,7) 

   

8 
L,3,12M, 

3 
(13,3) 
(9,3) 

(@,@) 
(3,6) 

         

9 
K,3,14N, 

3 
(1,3) 

(@,@) 
(5,4) 

(10,1) 
(8,1) 

(10,2) 
        

10 
J,3,15 
O, 3 

(9,2) 
(11,1) 

(9,3) 
(@,@) 

(2,4) 
(@,@) 

        

11 
I,3,17 
P, 3 

(10,1) 
(@,@) 

(13,4) 
(15,1) 

(13,5) 
(18,2) 

        

12 
G,4,2 
L, 3 

(@,@) 
(7,4) 

(14,2) 
(@,@) 

(3,9) 
(5,10) 

        

13 
F,7,13 

F, 7 
(7,3) 
(1,3) 

(7,4) 
(14,1) 

(1,7) 
(8,1) 

(4,6) 
(11,2) 

(4,8) 
(11,3) 

(7,6) 
(17,3) 

(7,8) 
(4,8) 

    

14 
E,8,7 
K, 3 

(13,2) 
(5,5) 

(5,7) 
(12,2) 

(1,10) 
(7,8) 

        

15 
D,9,3 
J, 3 

(11,2) 
(16,2) 

(18,2) 
(@,@) 

(@,@) 
(7,7) 

        

16 
C,10,4 

R, 2 
(18,1) 
(2,2) 

(15,1) 
(@,@) 

         

17 
B,10,5 

I, 3 
(6,2) 
(2,3) 

(6,3) 
(@,@) 

(13,6) 
(@,@) 

        

18 
A,11,1Q, 

2 
(4,4) 

(16,1) 
(11,3) 
(15,2) 

         

Figure 3 (b): Proposed Modified Inverted Matrix generated with single scan of database after reading next 5 transactions 
 
In COFI Tree building and mining, the same process as 
explained in [17] is carried out with a modification of 
considering backward pointers also. Since new transactions 
can be easily added in Inverted Matrix without re-scanning 
the original database, Incremental Mining can be achieved. 
Now for building the COFI Tree for E considering 
Modified Inverted Matrix, for the first column reading 
forward pointers item D is discovered and from backward 
pointers items H, C and B are discovered. Discarding item 
H being not frequent and sorting the rest creates a branch of 
E which is EDCB. This branch is same as generated from 
Inverted Matrix. The similar process is carried out for 
building COFI Tree and the final tree for ‘E’ is shown in 
Figure 4 which is same as that of generated from Inverted 
matrix in [17]. So the mining process remains same. 
Moreover since for each item an independent COFI Tree is 
built, the mining process can run in parallel. To mine 
frequent patterns alternate splitting technique is used. 

 
Figure 4: COFI Tree for ‘E’ using Modified Inverted Matrix [17] 

3.1 Alternate Splitting Technique 
In this technique, all frequent items from the modified 
inverted matrix are evenly assigned to m nodes, one by one, 
i.e. least frequent item is assigned to node 1, and next least 
frequent item is assigned to node 2 and so on up to m 
nodes. After that, (m+1)th item is assigned to node 1 and so 
on until all items are distributed amongst all m nodes. The 
implementation architecture of this technique is shown in 
Figure 5. Since the mining process is distributed among 
parallel nodes the running time of mining process can be 
significantly reduced. By this we state that this is the best 
algorithm of its kind which is both incremental and 
interactive in nature and can be implemented parallel. 

 
Figure 5: Implementation Architecture of Alternative 

Splitting 
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4. CONCLUSION

Association rule mining has been an important part in many 
of the business, commercial and non-commercial 
applications. But as the database updates, the maintenance 
of association rules is an important and critical problem. 
The overall objective of this work was to achieve the task 
of incremental mining whenever database changes, without 
referring to the previous database again and reduce the time 
to mine frequent items. The proposed Modified Inverted 
Matrix has been generated with single scan of database. In 
the paper, through theoretical justifications, it was 
demonstrated that using Modified Inverted Matrix, same 
COFI Tree can be developed which we can generate using 
original Inverted matrix. Also since independent trees are 
built, the same MIM can be mined in parallel nodes. The 
proposed modification to the inverted matrix serves two 
important purposes. First, it can be updated easily by 
reading the incremented database without referring to the 
original database. Second, the COFI tree can be generated 
from the modified inverted matrix. The generated COFI 
tree can be used for extracting the frequent item-sets. 
Hence, for generating updated association rules, re-
scanning of the original database is not required, which 
achieves the task of incremental mining. Third, the 
proposed MIM also supports interactive mining, i.e. 
whenever desired support changes, it is not required to 
rebuild the MIM. 
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